3.2 Psychologists Use Descriptive, Correlational, and Experimental Research Designs to Understand Behaviour – Introduction to Psychology – 1st Canadian Edition (2022)

Chapter 3. Psychological Science

Learning Objectives

  1. Differentiate the goals of descriptive, correlational, and experimental research designs and explain the advantages and disadvantages of each.
  2. Explain the goals of descriptive research and the statistical techniques used to interpret it.
  3. Summarize the uses of correlational research and describe why correlational research cannot be used to infer causality.
  4. Review the procedures of experimental research and explain how it can be used to draw causal inferences.

Psychologists agree that if their ideas and theories about human behaviour are to be taken seriously, they must be backed up by data. However, the research of different psychologists is designed with different goals in mind, and the different goals require different approaches. These varying approaches, summarized in Table 3.2, are known as research designs. A research designis the specific method a researcher uses to collect, analyze, and interpret data. Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive researchis research designed to provide a snapshot of the current state of affairs. Correlational researchis research designed to discover relationships among variables and to allow the prediction of future events from present knowledge. Experimental researchis research in which initial equivalence among research participants in more than one group is created, followed by a manipulation of a given experience for these groups and a measurement of the influence of the manipulation. Each of the three research designs varies according to its strengths and limitations, and it is important to understand how each differs.

Table 3.2 Characteristics of the Three Research Designs
[Skip Table]
Research designGoalAdvantagesDisadvantages
DescriptiveTo create a snapshot of the current state of affairsProvides a relatively complete picture of what is occurring at a given time. Allows the development of questions for further study.Does not assess relationships among variables. May be unethical if participants do not know they are being observed.
CorrelationalTo assess the relationships between and among two or more variablesAllows testing of expected relationships between and among variables and the making of predictions. Can assess these relationships in everyday life events.Cannot be used to draw inferences about the causal relationships between and among the variables.
ExperimentalTo assess the causal impact of one or more experimental manipulations on a dependent variableAllows drawing of conclusions about the causal relationships among variables.Cannot experimentally manipulate many important variables. May be expensive and time consuming.
Source: Stangor, 2011.

Descriptive Research: Assessing the Current State of Affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behaviour of individuals. This section reviews three types of descriptive research: case studies, surveys, and naturalistic observation (Figure 3.4).

Sometimes the data in a descriptive research project are based on only a small set of individuals, often only one person or a single small group. These research designs are known as case studies descriptive records of one or more individual’s experiences and behaviour. Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics or who find themselves in particularly difficult or stressful situations. The assumption is that by carefully studying individuals who are socially marginal, who are experiencing unusual situations, or who are going through a difficult phase in their lives, we can learn something about human nature.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses the psychoanalyst interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud, 1909/1964).

Another well-known case study is Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there are questions about the interpretation of this case study (Kotowicz, 2007),it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005).An interesting example of a case study in clinical psychology is described by Rokeach (1964),who investigated in detail the beliefs of and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

In other cases the data from descriptive research projects come in the form of a survey a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviours of a sample of people of interest. The people chosen to participate in the research (known as the sample) are selected to be representative of all the people that the researcher wishes to know about (the population). In election polls, for instance, a sample is taken from the population of all “likely voters” in the upcoming elections.

The results of surveys may sometimes be rather mundane, such as “Nine out of 10 doctors prefer Tymenocin” or “The median income in the city of Hamilton is $46,712.” Yet other times (particularly in discussions of social behaviour), the results can be shocking: “More than 40,000 people are killed by gunfire in the United States every year” or “More than 60% of women between the ages of 50 and 60 suffer from depression.” Descriptive research is frequently used by psychologists to get an estimate of the prevalence (or incidence) of psychological disorders.

A final type of descriptive research — known as naturalistic observation — is research based on the observation of everyday events. For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting descriptive research, as is a biopsychologist who observes animals in their natural habitats. One example of observational research involves a systematic procedure known as the strange situation, used to get a picture of how adults and young children interact. The data that are collected in the strange situation are systematically coded in a coding sheet such as that shown in Table 3.3.

Table 3.3 Sample Coding Form Used to Assess Child’s and Mother’s Behaviour in the Strange Situation
[Skip Table]
Coder name: Olive
This table represents a sample coding sheet from an episode of the “strange situation,” in which an infant (usually about one year old) is observed playing in a room with two adults — the child’s mother and a stranger. Each of the four coding categories is scored by the coder from 1 (the baby makes no effort to engage in the behaviour) to 7 (the baby makes a significant effort to engage in the behaviour). More information about the meaning of the coding can be found in Ainsworth, Blehar, Waters, and Wall (1978).
Coding categories explained
ProximityThe baby moves toward, grasps, or climbs on the adult.
Maintaining contactThe baby resists being put down by the adult by crying or trying to climb back up.
ResistanceThe baby pushes, hits, or squirms to be put down from the adult’s arms.
AvoidanceThe baby turns away or moves away from the adult.
EpisodeCoding categories
ProximityContactResistanceAvoidance
Mother and baby play alone1111
Mother puts baby down4111
Stranger enters room1231
Mother leaves room; stranger plays with baby1311
Mother re-enters, greets and may comfort baby, then leaves again4212
Stranger tries to play with baby1311
Mother re-enters and picks up baby6612
Source: Stang0r, 2011.

The results of descriptive research projects are analyzed using descriptive statistics numbers that summarize the distribution of scores on a measured variable. Most variables have distributions similar to that shown in Figure 3.5 where most of the scores are located near the centre of the distribution, and the distribution is symmetrical and bell-shaped. A data distribution that is shaped like a bell is known as a normal distribution.

(Video) Tricky Topics: Introduction to Research in Psychology & Neuroscience

A distribution can be described in terms of its central tendency — that is, the point in the distribution around which the data are centred — and its dispersion, or spread. The arithmetic average, or arithmetic mean, symbolized by the letter M, is the most commonly used measure of central tendency. It is computed by calculating the sum of all the scores of the variable and dividing this sum by the number of participants in the distribution (denoted by the letter N). In the data presented in Figure 3.5 the mean height of the students is 67.12 inches (170.5 cm). The sample mean is usually indicated by the letter M.

In some cases, however, the data distribution is not symmetrical. This occurs when there are one or more extreme scores (known as outliers) at one end of the distribution. Consider, for instance, the variable of family income (see Figure 3.6), which includes an outlier (a value of $3,800,000). In this case the mean is not a good measure of central tendency. Although it appears from Figure 3.6 that the central tendency of the family income variable should be around $70,000, the mean family income is actually $223,960. The single very extreme income has a disproportionate impact on the mean, resulting in a value that does not well represent the central tendency.

The median is used as an alternative measure of central tendency when distributions are not symmetrical. The medianis the score in the center of the distribution, meaning that 50% of the scores are greater than the median and 50% of the scores are less than the median. In our case, the median household income ($73,000) is a much better indication of central tendency than is the mean household income ($223,960).

A final measure of central tendency, known as the mode, represents the value that occurs most frequently in the distribution. You can see from Figure 3.6 that the mode for the family income variable is $93,000 (it occurs four times).

In addition to summarizing the central tendency of a distribution, descriptive statistics convey information about how the scores of the variable are spread around the central tendency. Dispersion refers to the extent to which the scores are all tightly clustered around the central tendency, as seen in Figure 3.7.

Or they may be more spread out away from it, as seen in Figure 3.8.

One simple measure of dispersion is to find the largest (the maximum) and the smallest (the minimum) observed values of the variable and to compute the range of the variable as the maximum observed score minus the minimum observed score. You can check that the range of the height variable in Figure 3.5 is 72 – 62 = 10. The standard deviation, symbolized as s, is the most commonly used measure of dispersion. Distributions with a larger standard deviation have more spread. The standard deviation of the height variable is s = 2.74, and the standard deviation of the family income variable is s = $745,337.

An advantage of descriptive research is that it attempts to capture the complexity of everyday behaviour. Case studies provide detailed information about a single person or a small group of people, surveys capture the thoughts or reported behaviours of a large population of people, and naturalistic observation objectively records the behaviour of people or animals as it occurs naturally. Thus descriptive research is used to provide a relatively complete understanding of what is currently happening.

Despite these advantages, descriptive research has a distinct disadvantage in that, although it allows us to get an idea of what is currently happening, it is usually limited to static pictures. Although descriptions of particular experiences may be interesting, they are not always transferable to other individuals in other situations, nor do they tell us exactly why specific behaviours or events occurred. For instance, descriptions of individuals who have suffered a stressful event, such as a war or an earthquake, can be used to understand the individuals’ reactions to the event but cannot tell us anything about the long-term effects of the stress. And because there is no comparison group that did not experience the stressful situation, we cannot know what these individuals would be like if they hadn’t had the stressful experience.

Correlational Research: Seeking Relationships among Variables

In contrast to descriptive research, which is designed primarily to provide static pictures, correlational research involves the measurement of two or more relevant variables and an assessment of the relationship between or among those variables. For instance, the variables of height and weight are systematically related (correlated) because taller people generally weigh more than shorter people. In the same way, study time and memory errors are also related, because the more time a person is given to study a list of words, the fewer errors he or she will make. When there are two variables in the research design, one of them is called the predictor variable and the other the outcome variable. The research design can be visualized as shown in Figure 3.9,where the curved arrow represents the expected correlation between these two variables.

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatter plot. As you can see in Figure 3.10 a scatter plotis a visual image of the relationship between two variables. A point is plotted for each individual at the intersection of his or her scores for the two variables. When the association between the variables on the scatter plot can be easily approximated with a straight line, as in parts (a) and (b) of Figure 3.10 the variables are said to have a linear relationship.

(Video) Abnormal Psychology: Ch. 1 Overview to Understanding Abnorma

When the straight line indicates that individuals who have above-average values for one variable also tend to have above-average values for the other variable, as in part (a), the relationship is said to be positive linear. Examples of positive linear relationships include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case, people who score higher on one of the variables also tend to score higher on the other variable. Negative linear relationships, in contrast, as shown in part (b), occur when above-average values for one variable tend to be associated with below-average values for the other variable. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses, and between practice on and errors made on a learning task. In these cases, people who score higher on one of the variables tend to score lower on the other variable.

Relationships between variables that cannot be described with a straight line are known as nonlinear relationships. Part (c) of Figure 3.10 shows a common pattern in which the distribution of the points is essentially random. In this case there is no relationship at all between the two variables, and they are said to be independent. Parts (d) and (e) of Figure 3.10 show patterns of association in which, although there is an association, the points are not well described by a single straight line. For instance, part (d) shows the type of relationship that frequently occurs between anxiety and performance. Increases in anxiety from low to moderate levels are associated with performance increases, whereas increases in anxiety from moderate to high levels are associated with decreases in performance. Relationships that change in direction and thus are not described by a single straight line are called curvilinear relationships.

The most common statistical measure of the strength of linear relationships among variables is the Pearson correlation coefficient, which is symbolized by the letter r. The value of the correlation coefficient ranges from r = –1.00 to r = +1.00. The direction of the linear relationship is indicated by the sign of the correlation coefficient. Positive values of r (such as r = .54 or r = .67) indicate that the relationship is positive linear (i.e., the pattern of the dots on the scatter plot runs from the lower left to the upper right), whereas negative values of r (such as r = –.30 or r = –.72) indicate negative linear relationships (i.e., the dots run from the upper left to the lower right). The strength of the linear relationship is indexed by the distance of the correlation coefficient from zero (its absolute value). For instance, r = –.54 is a stronger relationship than r = .30, and r = .72 is a stronger relationship than r = –.57. Because the Pearson correlation coefficient only measures linear relationships, variables that have curvilinear relationships are not well described by r, and the observed correlation will be close to zero.

It is also possible to study relationships among more than two measures at the same time. A research design in which more than one predictor variable is used to predict a single outcome variable is analyzed through multiple regression (Aiken & West, 1991).Multiple regressionis a statistical technique, based on correlation coefficients among variables, that allows predicting a single outcome variable from more than one predictor variable. For instance, Figure 3.11 shows a multiple regression analysis in which three predictor variables (Salary, job satisfaction, and years employed) are used to predict a single outcome (job performance). The use of multiple regression analysis shows an important advantage of correlational research designs — they can be used to make predictions about a person’s likely score on an outcome variable (e.g., job performance) based on knowledge of other variables.

An important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables. Consider, for instance, a researcher who has hypothesized that viewing violent behaviour will cause increased aggressive play in children. He has collected, from a sample of Grade 4children, a measure of how many violent television shows each child views during the week, as well as a measure of how aggressively each child plays on the school playground. From his collected data, the researcher discovers a positive correlation between the two measured variables.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behaviour. Although the researcher is tempted to assume that viewing violent television causes aggressive play, there are other possibilities. One alternative possibility is that the causal direction is exactly opposite from what has been hypothesized. Perhaps children who have behaved aggressively at school develop residual excitement that leads them to want to watch violent television shows at home (Figure 3.13):

Although this possibility may seem less likely, there is no way to rule out the possibility of such reverse causation on the basis of this observed correlation. It is also possible that both causal directions are operating and that the two variables cause each other (Figure 3.14).

Still another possible explanation for the observed correlation is that it has been produced by the presence of a common-causal variable (also known as a third variable). A common-causal variableis a variable that is not part of the research hypothesis but that causes both the predictor and the outcome variable and thus produces the observed correlation between them. In our example, a potential common-causal variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may produce children who like to watch violent television and who also behave aggressively in comparison to children whose parents use less harsh discipline (Figure 3.15)

In this case, television viewing and aggressive play would be positively correlated (as indicated by the curved arrow between them), even though neither one caused the other but they were both caused by the discipline style of the parents (the straight arrows). When the predictor and outcome variables are both caused by a common-causal variable, the observed relationship between them is said to be spurious. A spurious relationshipis a relationship between two variables in which a common-causal variable produces and “explains away” the relationship. If effects of the common-causal variable were taken away, or controlled for, the relationship between the predictor and outcome variables would disappear. In the example, the relationship between aggression and television viewing might be spurious because by controlling for the effect of the parents’ disciplining style, the relationship between television viewing and aggressive behaviour might go away.

Common-causal variables in correlational research designs can be thought of as mystery variables because, as they have not been measured, their presence and identity are usually unknown to the researcher. Since it is not possible to measure every variable that could cause both the predictor and outcome variables, the existence of an unknown common-causal variable is always a possibility. For this reason, we are left with the basic limitation of correlational research: correlation does not demonstrate causation. It is important that when you read about correlational research projects, you keep in mind the possibility of spurious relationships, and be sure to interpret the findings appropriately. Although correlational research is sometimes reported as demonstrating causality without any mention being made of the possibility of reverse causation or common-causal variables, informed consumers of research, like you, are aware of these interpretational problems.

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible because the predictor variables cannot be manipulated. Correlational designs also have the advantage of allowing the researcher to study behaviour as it occurs in everyday life. And we can also use correlational designs to make predictions — for instance, to predict from the scores on their battery of tests the success of job trainees during a training session. But we cannot use such correlational information to determine whether the training caused better job performance. For that, researchers rely on experiments.

(Video) Writing in APA Format

Experimental Research: Understanding the Causes of Behaviour

The goal of experimental research design is to provide more definitive conclusions about the causal relationships among the variables in the research hypothesis than is available from correlational designs. In an experimental research design, the variables of interest are called the independent variable (or variables) and the dependent variable. The independent variablein an experiment is the causing variable that is created (manipulated) by the experimenter. The dependent variablein an experiment is a measured variable that is expected to be influenced by the experimental manipulation. The research hypothesis suggests that the manipulated independent variable or variables will cause changes in the measured dependent variables. We can diagram the research hypothesis by using an arrow that points in one direction. This demonstrates the expected direction of causality (Figure 3.16):

Research Focus: Video Games and Aggression

Consider an experiment conducted by Anderson and Dill (2000).The study was designed to test the hypothesis that viewing violent video games would increase aggressive behaviour. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (Wolfenstein 3D) or a nonviolent video game (Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (aggressive behaviour) was the level and duration of noise delivered to the opponent. The design of the experiment is shown in Figure 3.17

Two advantages of the experimental research design are (a) the assurance that the independent variable (also known as the experimental manipulation) occurs prior to the measured dependent variable, and (b) the creation of initial equivalence between the conditions of the experiment (in this case by using random assignment to conditions).

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions, a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table. Anderson and Dill first randomly assigned about 100 participants to each of their two groups (Group A and Group B). Because they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet — and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation — they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then they compared the dependent variable (the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable (and not some other variable) that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Second, and more important, is that some of the most interesting and key social variables cannot be experimentally manipulated. If we want to study the influence of the size of a mob on the destructiveness of its behaviour, or to compare the personality characteristics of people who join suicide cults with those of people who do not join such cults, these relationships must be assessed using correlational designs, because it is simply not possible to experimentally manipulate these variables.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviours in a given group of people. Descriptive research is summarized using descriptive statistics.
  • Correlational research designs measure two or more relevant variables and assess a relationship between or among them. The variables may be presented on a scatter plot to visually show the relationships. The Pearson Correlation Coefficient (r) is a measure of the strength of linear relationship between two variables.
  • Common-causal variables may cause both the predictor and outcome variable in a correlational design, producing a spurious relationship. The possibility of common-causal variables makes it impossible to draw causal conclusions from correlational research designs.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Random assignment to conditions is normally used to create initial equivalence between the groups, allowing researchers to draw causal conclusions.

Exercises and Critical Thinking

  1. There is a negative correlation between the row that a student sits in in a large class (when the rows are numbered from front to back) and his or her final grade in the class. Do you think this represents a causal relationship or a spurious relationship, and why?
  2. Think of two variables (other than those mentioned in this book) that are likely to be correlated, but in which the correlation is probably spurious. What is the likely common-causal variable that is producing the relationship?
  3. Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?
(Video) Psychology | Wikipedia audio article

Image Attributions

Figure 3.4:Reading newspaper” by Alaskan Dude (http://commons.wikimedia.org/wiki/File:Reading_newspaper.jpg) is licensed under CC BY 2.0

References

Aiken, L., & West, S. (1991).Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.

Ainsworth, M. S., Blehar, M. C., Waters, E., & Wall, S. (1978).Patterns of attachment: A psychological study of the strange situation. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life.Journal of Personality and Social Psychology, 78(4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. InSocial neuroscience: Key readings.(pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1909/1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.),Personality: Readings in theory and research(pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909).

Kotowicz, Z. (2007). The strange case of Phineas Gage.History of the Human Sciences, 20(1), 115–131.

Rokeach, M. (1964).The three Christs of Ypsilanti: A psychological study. New York, NY: Knopf.

Stangor, C. (2011). Research methods for the behavioural sciences (4th ed.). Mountain View, CA: Cengage.

Long Descriptions

Figure 3.6 long description: There are 25 families. 24 families have an income between $44,000 and $111,000 and one family has an income of $3,800,000. The mean income is $223,960 while the median income is $73,000. [Return to Figure 3.6]

Figure 3.10 long description: Types of scatter plots.

(Video) Psychology | Wikipedia audio article

  1. Positive linear, r=positive .82. The plots on the graph form a rough line that runs from lower left to upper right.
  2. Negative linear, r=negative .70. The plots on the graph form a rough line that runs from upper left to lower right.
  3. Independent, r=0.00. The plots on the graph are spread out around the centre.
  4. Curvilinear, r=0.00. The plots of the graph form a rough line that goes up and then down like a hill.
  5. Curvilinear, r=0.00. The plots on the graph for a rough line that goes down and then up like a ditch.

[Return to Figure 3.10]

FAQs

In what ways are experimental research designs preferable to correlational or descriptive designs? ›

Descriptive research is designed to provide a snapshot of the current state of affairs. Correlational research is designed to discover relationships among variables. Experimental research is designed to assess cause and effect.

What is the difference between descriptive research and descriptive correlational research? ›

Descriptive research is mostly conducted with the intention of gaining a better understanding of the study population. On the other hand, correlational research focuses on finding whether a relationship exists between two or more factors (variables) and also focuses on the nature of the relationship.

What is the use of descriptive correlational research design? ›

Descriptive research is research designed to provide a snapshot of the current state of affairs. Correlational research is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge.

What are four types of study designs used by psychologists? ›

Descriptive, correlational, and experimental research designs are used to collect and analyze data. Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviours in a given group of people.

What is the main difference between descriptive and experimental research approaches? ›

Descriptive research is a method that describes a study or a topic. It defines the characteristics of the variable under research and answers the questions related to it. Whereas experimental research is a scientific approach to testing a theory or a hypothesis using experimental groups and control variables.

What is an example of correlational research? ›

If there are multiple pizza trucks in the area and each one has a different jingle, we would memorize it all and relate the jingle to its pizza truck. This is what correlational research precisely is, establishing a relationship between two variables, “jingle” and “distance of the truck” in this particular example.

How do you conduct a descriptive correlational study? ›

Descriptive & Correlational Research Methods - YouTube

What is the difference between correlational and experimental research? ›

In an experimental design, you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can't impact the results. In a correlational design, you measure variables without manipulating any of them.

What is a descriptive method used in psychological research? ›

Descriptive, correlational, and experimental research designs are used to collect and analyze data. Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviors in a given group of people.

What are the two main types of research methods used in psychology? ›

There are several different research methods used in psychology. Broadly speaking, there are two distinct types: quantitative and qualitative.

What are the 3 types of experimental design? ›

What are The Types of Experimental Research Design? The types of experimental research design are determined by the way the researcher assigns subjects to different conditions and groups. They are of 3 types, namely; pre-experimental, quasi-experimental, and true experimental research.

What are the three basic types of research used in psychology? ›

Psychology research can usually be classified as one of three major types.
  • Causal or Experimental Research.
  • Descriptive Research.
  • Relational or Correlational Research.
Apr 16, 2020

Which is better a descriptive research or experimental research? ›

Descriptive research cannot determine the causality of events and as such cannot make future predictions. Experimental research accurately determines causality and therefore can make future predictions.

What is the purpose of descriptive research? ›

Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables.

What is an example of descriptive research? ›

Descriptive-status

For example, a researcher researching the income of the employees in a company, and the relationship with their performance. A survey will be carried out to gather enough data about the income of the employees, then their performance will be evaluated and compared to their income.

What is an example of correlation in psychology? ›

An example of positive correlation would be height and weight. Taller people tend to be heavier. A negative correlation is a relationship between two variables in which an increase in one variable is associated with a decrease in the other.

What is the importance of correlational research? ›

Conclusion: Findings from correlational research can be used to determine prevalence and relationships among variables, and to forecast events from current data and knowledge.

What is the correlation method of research in psychology? ›

A correlational study is a type of research design that looks at the relationships between two or more variables. Correlational studies are non-experimental, which means that the experimenter does not manipulate or control any of the variables. A correlation refers to a relationship between two variables.

What is the difference between correlational and experimental research? ›

In an experimental design, you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can't impact the results. In a correlational design, you measure variables without manipulating any of them.

What is one of the most important differences between correlational and experimental research designs? ›

The major difference between correlational research and experimental research is methodology. In correlational research, the researcher looks for a statistical pattern linking 2 naturally-occurring variables while in experimental research, the researcher introduces a catalyst and monitors its effects on the variables.

What is the main difference between an experiment and a correlational study quizlet? ›

What is the main difference between an experiment and a correlational study? An experiment involves the manipulation of variables, while a correlational study does not.

What is a descriptive correlational design? ›

Descriptive Correlational Designs. Descriptive correlational studies describe the variables and the relationships that occur naturally between and among them. Predictive Correlational Designs. Predictive correlational studies predict the variance of one or more variables based on the variance of another variable (s).

What is the main advantage of an experiment over a correlational study? ›

The researcher is better able to draw conclusions about cause and effect. What is the main advantage of an experiment over a correlational study? although they may seem impractical, theories can be very important in helping to stimulate practical ideas and practical research.

What is the advantage of experimental method of research than correlational method? ›

Experimental studies allow the researcher to control the variables in the study, while correlational ones involve just looking at the data that already exists. Experimental studies allow the researcher to draw conclusions about one variable causing changes in another.

What are the two major advantages of experimental research over correlational studies? ›

What are the two major advantages of experimental research over correlational studies? - Casual relationships can be inferred. - Random assignment is possible. You just studied 66 terms!

Which of the following is an advantage of a correlational rather than an experimental approach? ›

try to hold extraneous variables constant during the course of your experiment. Which of the following is an advantage of interpreting results of a study using a correlational rather than an experimental approach? It helps in determining how naturally occurring variables relate in the real world.

What type of study is a correlational study? ›

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It's a non-experimental type of quantitative research.

How do you write a descriptive correlational research design? ›

Descriptive & Correlational Research Methods - YouTube

What is descriptive research methods in psychology? ›

Descriptive research methods are scientific tools used by researchers and psychologists for gathering information and describing the specifics of behaviors, patterns, and other phenomena. These methods focus on the who, what, and where, versus the why or how.

Is descriptive correlational research Quantitative or qualitative? ›

There are four main types of Quantitative research: Descriptive, Correlational, Causal-Comparative/Quasi-Experimental, and Experimental Research. attempts to establish cause- effect relationships among the variables. These types of design are very similar to true experiments, but with some key differences.

Videos

1. Learn Data Science - full tutorial course for beginners
(Rachid Ajidad)
2. Integrative Science Symposium: Psychology in an Economic World
(PsychologicalScience)
3. Food Sensory Science: FST107b Lecture14 Part1 - Rose Marie Pangborn
(UC Davis Library)
4. Developmental Psychology - Human Development - CH1
(R. J. Birmingham)
5. Experimental Design | Urdu- Research Methods and Design
(TheQLGConsultants)
6. Cognitive Psychology explained in less than 5 minutes
(Psychology Unlocked)

You might also like

Latest Posts

Article information

Author: Melvina Ondricka

Last Updated: 09/14/2022

Views: 6732

Rating: 4.8 / 5 (48 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Melvina Ondricka

Birthday: 2000-12-23

Address: Suite 382 139 Shaniqua Locks, Paulaborough, UT 90498

Phone: +636383657021

Job: Dynamic Government Specialist

Hobby: Kite flying, Watching movies, Knitting, Model building, Reading, Wood carving, Paintball

Introduction: My name is Melvina Ondricka, I am a helpful, fancy, friendly, innocent, outstanding, courageous, thoughtful person who loves writing and wants to share my knowledge and understanding with you.